Sentiment Classification of Chinese Contrast Sentences

نویسندگان

  • Junjie Li
  • Yu Zhou
  • Chunyang Liu
  • Lin Pang
چکیده

We present the study of sentiment classification of Chinese contrast sentences in this paper, which are one of the commonly used language constructs in text. In a typical review, there are at least around 6% of such sentences. Due to the complex contrast phenomenon, it is hard to use the traditional bag-of-words to model such sentences. In this paper, we propose a Two-Layer Logistic Regression (TLLR) model to leverage such relationship in sentiment classification. According to different connectives, our model can treat different clauses differently in sentiment classification. Experimental results show that TLLR model can effectively improve the performance of sentiment classification of Chinese contrast sentences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Sentiment Polarity of Chinese Words and Sentences

This paper reports on experiments with a newly available sentiment classification test collection for Chinese. Detection of negation during training and classification is shown to improve the accuracy of character-based classification for the semantic orientation of individual Chinese words. Using the resulting classifier for unknown words resulted in substantial improvements in classification ...

متن کامل

Using Topic Sentiment Sentences to Recognize Sentiment Polarity in Chinese Reviews

An approach to recognizing sentiment polarity in Chinese reviews based on topic sentiment sentences is presented. Considering the features of Chinese reviews, we firstly identify the topic of a review using an n-gram matching approach. To extract candidate topic sentiment sentences, we compute the semantic similarity between a given sentence and the ascertained topic and meanwhile determine whe...

متن کامل

Sentiment Classification Considering Negation and Contrast Transition

Negation and contrast transition are two kinds of linguistic phenomena which are popularly used to reverse the sentiment polarity of some words and sentences. In this paper, we propose an approach to incorporate their classification information into our sentiment classification system: First, we classify sentences into sentiment reversed and non-reversed parts. Then, represent them as two diffe...

متن کامل

Fine Granular Aspect Analysis using Latent Structural Models

In this paper, we present a structural learning model for joint sentiment classification and aspect analysis of text at various levels of granularity. Our model aims to identify highly informative sentences that are aspect-specific in online custom reviews. The primary advantages of our model are two-fold: first, it performs document-level and sentence-level sentiment polarity classification jo...

متن کامل

A Statistical Parsing Framework for Sentiment Classification

We present a statistical parsing framework for sentence-level sentiment classification in this article. Unlike previous works that use syntactic parsing results for sentiment analysis, we develop a statistical parser to directly analyze the sentiment structure of a sentence. We show that complicated phenomena in sentiment analysis (e.g., negation, intensification, and contrast) can be handled t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014